Math 246B Lecture 9 Notes

Daniel Raban

January 30, 2019

1 Phragmén-Lindelöf for Strips and Cauchy's Integral Formula for Non-Holomorphic Functions

1.1 Phragmén-Lindelöf for a half-strip and a strip

Proposition 1.1 (PL for a half-strip). Let $\Omega = \{z \in \mathbb{C} : \operatorname{Im}(z) > 0, \alpha < \operatorname{Re}(z) < \beta\}$, with $\alpha < \beta$ finite. Then $\varphi(z) = e^{k \operatorname{Im}(z)}$ is a PL function for Ω for any $0 < k < \pi/(\beta - \alpha)$.

Proof. Let $F(z) = e^{-icz}$, where $c < 2\pi/(\beta - \alpha)$. $F : \Omega \to \tilde{\Omega}$ is conformal, where $\tilde{\Omega} = -\{w \in \mathbb{C} : |w| > 1, c\alpha < \arg(w) < c\beta\}$. F is a homeomorphism $\overline{\Omega} \to \overline{\tilde{\Omega}}$. In $\tilde{\Omega}$, we have the PL function $\varphi(w) = |w|^{k/c}$, where $k/c < \pi/(c(\beta - \alpha))$. We get $\varphi(z) = \tilde{\varphi}(F(z)) = |F(z)|^{k/c} = e^{k \operatorname{Im}(z)}$ is a PL function for Ω .

Proposition 1.2 (PL for an entire strip). Let $\Omega = \{z \in \mathbb{C} : \alpha < \operatorname{Re}(z) < \beta\}$ with $\alpha < \beta$ finite. Then $\varphi(z) = e^{k \operatorname{Im}(z)}$ is a PL function for Ω for any $0 < k < \pi/(\beta - \alpha)$. Then $\varphi(z) = e^{k|\operatorname{Im}(z)|}$ is a PL function for Ω for any $0 < k < \pi/(\beta - \alpha)$.

Proof. Let $u \in SH(\Omega)$ be upper semicontinuous on $\overline{\Omega}$, $u \leq M$ on $\partial\Omega$, and $u(z) \leq \varphi(z)$ for large $z \in \overline{\Omega}$. We want to show that $u \leq M$ on $\overline{\Omega}$. By the previous result, we get that $u \leq \max(M, L)$ on $\Omega_1 = \Omega \cap \{z : \operatorname{Im}(z) > 0\}$, where $L = \max_{[\alpha,\beta]} u < \infty$. Similarly, using $z \mapsto -z$, we conclude that $u \leq \max(M, L)$ on $\Omega_2 = \Omega \cap \{z : \operatorname{Im}(z) < 0\}$. So u is bounded on Ω .

We claim that any positive constant is a PL-function for Ω . It suffices to construct a harmonic $\psi \geq 0$ such that $\psi(z) \to \infty$ as $|z| \to \infty$. We can take $\psi(z) = \operatorname{Re}(\sqrt{z-\gamma})$, where $\gamma < \alpha$. Then $\psi(z) = |z - \gamma|^{1/2} \cos(\arg(z - \gamma)/2) \sim |z^{1/2}|$ at ∞ in Ω . We conclude that $u \leq M$ on $\overline{\Omega}$. So $\varphi(z) = e^{k|\operatorname{Im}(z)|}$ is a PL function for Ω .

Corollary 1.1 (Hadamard's three line theorem). Let $\Omega = \{z \in \mathbb{C} : \alpha < \operatorname{Re}(z) < \beta\}$. Let $u \in SL(\Omega)$, upper semicontinuous on $\overline{\Omega}$, $u \leq A$ on $\partial\Omega$, and $u(z) \leq e^{k|\operatorname{Im}(z)|}$ for large $z \in \Omega$, where $0 < k < \pi/(\beta - \alpha)$. Let $M(x) = \sup_{\operatorname{Re}(z)=x} u(z)$ for $\alpha \leq x \leq \beta$. Then M is convex. The proof is similar to ideas we've seen before, so we will just give the idea.

Proof. Here is the idea. Let $a, b \in \mathbb{R}$ be such that $M(x) = M(x) - ax - b \leq 0$ for $x = \alpha, \beta$. Show that $\tilde{M}(x) \leq 0$ for $\alpha \leq x \leq \beta$. If $\tilde{u}(z) = u(z) - a \operatorname{Re}(z) - b$, then $\tilde{u} \in SH(\Omega)$ has the right growth at ∞ , and $\tilde{M}(x) = \sup_{\operatorname{Re}(z)=x}(z) \implies \tilde{u} \leq 0$ on $\partial\Omega$. By the PL theorem applied to $\tilde{u}, \tilde{u} \leq 0$ in Ω . So $\tilde{M}(x) \leq 0$ on $[\alpha, \beta]$.

1.2 Cauchy's integral formula for non-holomorphic functions

Theorem 1.1 (Cauchy's integral formula for non-holomorphic functions). Let $\omega \subseteq \mathbb{C}$ be a bounded open set with piecewise C^1 boundary, and let $u \in C^1(\overline{\Omega})$. Then

$$u(z) = \frac{1}{2\pi i} \int_{\partial \omega} \frac{u(\zeta)}{\zeta - z} d\zeta 0 \frac{1}{\pi} \iint_{\omega} \frac{\partial u}{\partial \overline{\zeta}}(\zeta) \frac{1}{\zeta - z} L(d\zeta),$$

where $L(d\zeta)$ is the Lebesgue measure in ω .

Remark 1.1. The integral over ω makes sense, as $1/\zeta \in L^1_{loc}(\mathbb{C})$:

$$\iint_{|\zeta|<1} \frac{1}{|\zeta|} L(d\zeta) \stackrel{\zeta=re^{it}}{=} \iint dr \, dt < \infty.$$

Proof. Let $v \in C^1(\overline{\omega})$. By Green's formula,

$$\int_{\partial\omega} v(\zeta) \, d\zeta \stackrel{\zeta = \xi + i\eta}{=} \int_{\partial\omega} v(\zeta) \, d\xi + iv(\zeta) d\eta = \iint_{\omega} \left(i \frac{\partial v}{\partial \xi} - \frac{\partial v}{\partial \eta} \right) L(d\zeta) = 2i \iint_{\omega} \frac{\partial v}{\partial \overline{z}} L(d\zeta).$$

Apply this to $v(\zeta) = u(\zeta)/(\zeta - z)$ and $\omega_{\varepsilon} = \{\zeta \in \omega : |\zeta - z| > \varepsilon\}$ for small ε . We get

$$\int_{\partial\omega} \frac{u(\zeta)}{\zeta - z} \, d\zeta - \int_{|\zeta - z| = \varepsilon} \frac{u(\zeta)}{\zeta - z} \, d\zeta = 2i \iint_{\omega_{\varepsilon}} \frac{1}{\zeta - z} \frac{\partial u}{\partial \overline{\zeta}}(\zeta) \, L(d\zeta).$$

Letting $\varepsilon \to 0^+$, we get

$$\int_{|z-\zeta|=\varepsilon} \frac{u(\zeta)}{\zeta-z} \, d\zeta \to 2\pi i u(z),$$

and

$$\iint_{\omega_{\varepsilon}} \frac{1}{\zeta - z} \frac{\partial u}{\partial \overline{\zeta}} L(d\zeta) \to \iint_{\omega} \frac{1}{\zeta - z} \frac{\partial u}{\partial \overline{\zeta}}(\zeta) L(d\zeta) \in L^{1}$$

by dominated convergence.